The Genomite Project

Genomite: New generation sustainable tools to control emerging mite pests under climate change

Introduction:

The Challenge –

Climate change will have serious and profound impacts on pests and diseases of agricultural crops in Europe and it is vital that new tools and management methods are developed to tackle the problems that will increasingly threaten EU food production as a result.

Spider mite outbreaks and crop damage are strongly favoured by high temperatures and drought stress caused by climate change (especially in combination), that will have a serious impact not only in southern Europe and the Mediterranean basin but also throughout Europe, because of more extreme weather events including heat waves and droughts. The two-spotted spider mite, Tetranychus urticae (TSSM), is a highly polyphagous species which attacks many crops and is adapting to attack several important new crops including grape vines and corn. Tetranychus evansi (TE) is a recently arrived alien invasive pest that is spreading through Europe and attacks important Solanaceous crops including tomato and potato.

Phytoseiid predatory mites are the main naturally occurring predators that help regulate spider mite populations and are introduced as biocontrol agents for control of spider mites in commercial crops. They are sensitive to broad-spectrum insecticides and the increasing use of these insecticides to control other alien invasive pests, e.g. spotted wing drosophila and brown marmorated stink bug, are harming them and causing more serious outbreaks of spider mites.

Project Aims –

In this project, for the first time, comprehensive state-of-the-art genomic, metabolomic and modelling methods will be used to develop the necessary tools and management methods for tackling spider mites that are increasingly serious pests of many important crops throughout the EU. This will not only be an outstanding contribution to spider mite management under climate change but crucially, be an example, demonstrating how the best and most advanced methods can be applied to the vast array of other important pests and diseases that will develop because of climate change.

Teams from 7 EU countries, scientifically led by Canada, will model the performance of each organism in plant-spider mite-predators tritrophic interaction under changing climatic (CC) conditions. This will be accompanied by determination of reciprocal transcriptional and metabolomics changes in plants (tomato and strawberry) and spider mites (TSSM and TE) upon their interactions under normal and CC scenarios. In addition, we will search for elicitors and effectors of TSSM and TE that are capable of modulating plant defences. Using systems biology approaches, we will link performance of plants and mites with genome-wide changes in their responses. Thus, our study will not only model performance of organisms involved in tritrophic interactions, but will also model processes whose changes lead to modulated performance under CC. This comprehensive knowledge can then be used to develop new tools and methods for climate-smart pest control.

Two-spotted spider mite (TSSM)

Two-spotted spider mite (TSSM)

Funding:

Genomite is a three year collaborative project that started on 1 January 2015 funded by FACCE-JPI, the European Union (EU) Joint Programming Initiative on Agriculture, Food Security and Climate Change through the European Research Area-Network (ERA-NET) scheme.
Further details can be found in the ‘Genomite statement and funding acknowledgement’.

Two spotted spider mite webbing on strawberry fruitlet 0304

Two-spotted spider mite webbing on strawberry fruit


Genomite Partners’ Area (password required)

Genomite Consortium Agreement – Consortium Agreement   Genomite Consortium Mailing List – Consortium Mailing List   Genomite Meetings and Review – FACCE JPT meetings General Assembly Management Support Team   Genomite Proposal Submitted – Proposal Complete Publishable summary Work Package … Continue Reading


Genomite Project Partners

Department of Biology, Faculty of Science The University of Western Ontario 1151 Richmond St London Ontario CANADA N6A 5B7 Genomite Project Science Leader –  Dr Miodrag Grbic: Associate Professor   Dr Vojislava Grbic: Associate Professor NIAB EMR New Road East Malling Kent … Continue Reading


The Genomite Project – Further reading

Warming decreases thermal heterogeneity of leaf surfaces: implications for behavioural thermoregulation by arthropods Robin Caillon, Christelle Suppo, Jérôme Casas, H. Arthur Woods & Sylvain Pincebourde Paper: Functional Ecology 2014, 28, 1449–1458 doi: 10.1111/1365-2435.12288 Or click below for a lay-person’s summary Warming homogenizes leaf surface … Continue Reading

Related Links

EMR Vodcast

View

EMR Events

View

Latest News

View

Our People

View

Training

View